Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-nearest neighbor classifier

نویسندگان

  • Muhammad Atif Tahir
  • Ahmed Bouridane
  • Fatih Kurugollu
چکیده

Feature selection and feature weighting are useful techniques for improving the classification accuracy of K-nearest-neighbor (K-NN) rule. The term feature selection refers to algorithms that select the best subset of the input feature set. In feature weighting, each feature is multiplied by a weight value proportional to the ability of the feature to distinguish pattern classes. In this paper, a novel hybrid approach is proposed for simultaneous feature selection and feature weighting of K-NN rule based on Tabu Search (TS) heuristic. The proposed TS heuristic in combination with K-NN classifier is compared with several classifiers on various available data sets. The results have indicated a significant improvement in the performance in classification accuracy. The proposed TS heuristic is also compared with various feature selection algorithms. Experiments performed revealed that the proposed hybrid TS heuristic is superior to both simple TS and sequential search algorithms. We also present results for the classification of prostate cancer using multispectral images, an important problem in biomedicine. 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

A New Approach for Handling Null Values in Web Log Using KNN and Tabu Search KNN

When the data mining procedures deals with the extraction of interesting knowledge from web logs is known as Web usage mining. The result of any mining is successful, only if the dataset under consideration is well preprocessed. One of the important preprocessing steps is handling of null/missing values. Handlings of null values have been a great bit of test for researcher. Various methods are ...

متن کامل

A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization

Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...

متن کامل

Human action categorization using discriminative local spatio-temporal feature weighting

New methods based on local spatio-temporal features have exhibited significant performance in action recognition. In these methods, feature selection plays an important role to achieve a superior performance. Actions are represented by local spatio-temporal features extracted from action videos. Action representations are then classified by applying a classifier (such as k-nearest neighbor or S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2007